Nuprl Lemma : face-forall-implies-csm+

[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}]. ∀[K:j⊢]. ∀[tau:K j⟶ H].  K.𝕀 ⊢ ((((∀ phi))tau)p  (phi)tau+)


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-term-implies: Gamma ⊢ (phi  psi) face-type: 𝔽 interval-type: 𝕀 csm+: tau+ cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  csm+_wf_interval face-forall-implies csm-ap-term_wf cube-context-adjoin_wf interval-type_wf face-type_wf cubical_set_cumulativity-i-j csm-face-type cube_set_map_wf cubical-term_wf cubical_set_wf cc-fst_wf csm-face-forall subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf equal_wf face-term-implies_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry universeIsType inhabitedIsType because_Cache hyp_replacement applyLambdaEquality independent_isectElimination

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    K.\mBbbI{}  \mvdash{}  ((((\mforall{}  phi))tau)p  {}\mRightarrow{}  (phi)tau+)



Date html generated: 2020_05_20-PM-03_03_25
Last ObjectModification: 2020_04_06-AM-10_33_15

Theory : cubical!type!theory


Home Index