Nuprl Lemma : face-forall-implies-csm+
∀[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}]. ∀[K:j⊢]. ∀[tau:K j⟶ H].  K.𝕀 ⊢ ((((∀ phi))tau)p 
⇒ (phi)tau+)
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
csm+_wf_interval, 
face-forall-implies, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-type_wf, 
cubical_set_cumulativity-i-j, 
csm-face-type, 
cube_set_map_wf, 
cubical-term_wf, 
cubical_set_wf, 
cc-fst_wf, 
csm-face-forall, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
equal_wf, 
face-term-implies_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
because_Cache, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    K.\mBbbI{}  \mvdash{}  ((((\mforall{}  phi))tau)p  {}\mRightarrow{}  (phi)tau+)
Date html generated:
2020_05_20-PM-03_03_25
Last ObjectModification:
2020_04_06-AM-10_33_15
Theory : cubical!type!theory
Home
Index