Nuprl Lemma : face-term-and-implies2
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].  Gamma ⊢ ((phi ∧ psi) 
⇒ psi)
Proof
Definitions occuring in Statement : 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
face-term-implies_wf, 
squash_wf, 
true_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
face-and-com, 
subtype_rel_self, 
iff_weakening_equal, 
face-term-and-implies1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  psi)
Date html generated:
2020_05_20-PM-02_47_16
Last ObjectModification:
2020_04_04-PM-05_01_22
Theory : cubical!type!theory
Home
Index