Nuprl Lemma : fiber-comp_wf
∀[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[cT:X ⊢ Compositon(T)]. ∀[cA:X +⊢ Compositon(A)].
  (fiber-comp(X;T;A;w;a;cT;cA) ∈ X ⊢ Compositon(Fiber(w;a)))
Proof
Definitions occuring in Statement : 
fiber-comp: fiber-comp(X;T;A;w;a;cT;cA)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-fiber: Fiber(w;a)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cubical-fiber: Fiber(w;a)
, 
fiber-comp: fiber-comp(X;T;A;w;a;cT;cA)
Lemmas referenced : 
cc-snd_wf, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-fun_wf, 
cc-fst_wf, 
csm-cubical-fun, 
cubical-term_wf, 
sigma_comp_wf2, 
path-type_wf, 
csm-ap-type_wf, 
cubical-app_wf_fun, 
path_comp_wf, 
csm-comp-structure_wf, 
composition-structure_wf, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[cT:X  \mvdash{}  Compositon(T)].
\mforall{}[cA:X  +\mvdash{}  Compositon(A)].
    (fiber-comp(X;T;A;w;a;cT;cA)  \mmember{}  X  \mvdash{}  Compositon(Fiber(w;a)))
Date html generated:
2020_05_20-PM-05_13_07
Last ObjectModification:
2020_04_17-AM-00_18_57
Theory : cubical!type!theory
Home
Index