Nuprl Lemma : fiber-comp_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[cT:X ⊢ Compositon(T)]. ∀[cA:X +⊢ Compositon(A)].
  (fiber-comp(X;T;A;w;a;cT;cA) ∈ X ⊢ Compositon(Fiber(w;a)))


Proof




Definitions occuring in Statement :  fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) composition-structure: Gamma ⊢ Compositon(A) cubical-fiber: Fiber(w;a) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] and: P ∧ Q cubical-fiber: Fiber(w;a) fiber-comp: fiber-comp(X;T;A;w;a;cT;cA)
Lemmas referenced :  cc-snd_wf csm-ap-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-fun_wf cc-fst_wf csm-cubical-fun cubical-term_wf sigma_comp_wf2 path-type_wf csm-ap-type_wf cubical-app_wf_fun path_comp_wf csm-comp-structure_wf composition-structure_wf istype-cubical-term cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[cT:X  \mvdash{}  Compositon(T)].
\mforall{}[cA:X  +\mvdash{}  Compositon(A)].
    (fiber-comp(X;T;A;w;a;cT;cA)  \mmember{}  X  \mvdash{}  Compositon(Fiber(w;a)))



Date html generated: 2020_05_20-PM-05_13_07
Last ObjectModification: 2020_04_17-AM-00_18_57

Theory : cubical!type!theory


Home Index