Nuprl Lemma : fl-eq-0-1-false
∀I:Top. ((0==1) ~ ff)
Proof
Definitions occuring in Statement : 
fl-eq: (x==y), 
face_lattice: face_lattice(I), 
lattice-0: 0, 
lattice-1: 1, 
bfalse: ff, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
fl-eq: (x==y), 
free-dml-deq: free-dml-deq(T;eq), 
deq-fset: deq-fset(eq), 
isl: isl(x), 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
decidable__assert, 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
decidable__and, 
lattice-1: 1, 
fset-singleton: {x}, 
cons: [a / b], 
bnot: ¬bb, 
decidable__fset-member, 
deq-fset-member: a ∈b s, 
deq-member: x ∈b L, 
member: t ∈ T
Lemmas referenced : 
top_wf, 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
decidable__assert, 
decidable__and, 
decidable__fset-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}I:Top.  ((0==1)  \msim{}  ff)
Date html generated:
2018_05_23-AM-08_38_36
Last ObjectModification:
2017_11_24-PM-02_45_44
Theory : cubical!type!theory
Home
Index