Nuprl Lemma : fl-morph-0
∀[A,B:fset(ℕ)]. ∀[g:A ⟶ B].  ((0)<g> = 0 ∈ Point(face_lattice(A)))
Proof
Definitions occuring in Statement : 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-0: 0, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced : 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-0_wf, 
face_lattice_wf, 
bdd-distributive-lattice_wf, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].    ((0)<g>  =  0)
Date html generated:
2016_05_18-PM-00_15_59
Last ObjectModification:
2015_12_28-PM-03_00_16
Theory : cubical!type!theory
Home
Index