Nuprl Lemma : fl_all-1

I,J,i:Top.  ((∀i.1) 1)


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) face_lattice: face_lattice(I) lattice-1: 1 top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] fl_all: (∀i.phi) fl-all-hom: fl-all-hom(I;i) fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-1: 1 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] nil: [] it: fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L bfalse: ff lattice-join: a ∨ b fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-0: 0 empty-fset: {} lattice-fset-meet: /\(s) fset-minimal: fset-minimal(x,y.less[x; y];s;a) fset-null: fset-null(s) null: null(as) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) band: p ∧b q deq-f-subset: deq-f-subset(eq) isl: isl(x) decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert bnot: ¬bb deq-fset: deq-fset(eq) decidable__equal_fset decidable__and2 decidable__and member: t ∈ T
Lemmas referenced :  face-lattice-property free-dist-lattice-with-constraints-property decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert decidable__equal_fset decidable__and2 decidable__and top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis lemma_by_obid

Latex:
\mforall{}I,J,i:Top.    ((\mforall{}i.1)  \msim{}  1)



Date html generated: 2016_05_18-PM-00_17_49
Last ObjectModification: 2016_03_25-AM-11_34_36

Theory : cubical!type!theory


Home Index