Nuprl Lemma : gluetype_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[f:{Gamma, phi ⊢ _:Equiv(T;A)}].
  Gamma ⊢ gluetype(Gamma;A;phi;T;f)


Proof




Definitions occuring in Statement :  gluetype: gluetype(Gamma;A;phi;T;f) cubical-equiv: Equiv(T;A) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gluetype: gluetype(Gamma;A;phi;T;f)
Lemmas referenced :  glue-type_wf equiv-fun_wf context-subset_wf thin-context-subset istype-cubical-term cubical-equiv_wf cubical-type_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType instantiate

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[f:\{Gamma,  phi  \mvdash{}  \_:Equiv(T;A)\}].
    Gamma  \mvdash{}  gluetype(Gamma;A;phi;T;f)



Date html generated: 2020_05_20-PM-07_05_00
Last ObjectModification: 2020_04_21-PM-07_53_53

Theory : cubical!type!theory


Home Index