Nuprl Lemma : levelsup_wf

[x,y:ℕ4].  (levelsup(x;y) ∈ ℕ4)


Proof




Definitions occuring in Statement :  levelsup: levelsup(x;y) int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T levelsup: levelsup(x;y) imax: imax(a;b) has-value: (a)↓ int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  value-type-has-value int_seg_wf set-value-type lelt_wf istype-int int-value-type le_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis imageElimination independent_isectElimination intEquality lambdaEquality_alt hypothesisEquality because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies universeIsType natural_numberEquality

Latex:
\mforall{}[x,y:\mBbbN{}4].    (levelsup(x;y)  \mmember{}  \mBbbN{}4)



Date html generated: 2020_05_20-PM-07_47_46
Last ObjectModification: 2020_05_05-PM-04_42_51

Theory : cubical!type!theory


Home Index