Nuprl Lemma : levelsup_wf
∀[x,y:ℕ4].  (levelsup(x;y) ∈ ℕ4)
Proof
Definitions occuring in Statement : 
levelsup: levelsup(x;y)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
levelsup: levelsup(x;y)
, 
imax: imax(a;b)
, 
has-value: (a)↓
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
value-type-has-value, 
int_seg_wf, 
set-value-type, 
lelt_wf, 
istype-int, 
int-value-type, 
le_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
imageElimination, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
natural_numberEquality
Latex:
\mforall{}[x,y:\mBbbN{}4].    (levelsup(x;y)  \mmember{}  \mBbbN{}4)
Date html generated:
2020_05_20-PM-07_47_46
Last ObjectModification:
2020_05_05-PM-04_42_51
Theory : cubical!type!theory
Home
Index