Nuprl Lemma : path-comp-exists

G:j⊢. ∀A:{G ⊢ _}. ∀a,b:{G ⊢ _:A}.  (G ⊢ CompOp(A)  G ⊢ CompOp((Path_A b)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  composition-op-implies-composition-structure path_comp_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 istype-cubical-term cubical-type_wf cubical_set_wf composition-structure-implies-composition-op path-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis universeIsType instantiate applyEquality sqequalRule inhabitedIsType independent_functionElimination

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}a,b:\{G  \mvdash{}  \_:A\}.    (G  \mvdash{}  CompOp(A)  {}\mRightarrow{}  G  \mvdash{}  CompOp((Path\_A  a  b)))



Date html generated: 2020_05_20-PM-05_12_23
Last ObjectModification: 2020_04_18-AM-09_57_23

Theory : cubical!type!theory


Home Index