Nuprl Lemma : path-comp-exists
∀G:j⊢. ∀A:{G ⊢ _}. ∀a,b:{G ⊢ _:A}.  (G ⊢ CompOp(A) ⇒ G ⊢ CompOp((Path_A a b)))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A), 
path-type: (Path_A a b), 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B
Lemmas referenced : 
composition-op-implies-composition-structure, 
path_comp_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf, 
composition-structure-implies-composition-op, 
path-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
inhabitedIsType, 
independent_functionElimination
Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}a,b:\{G  \mvdash{}  \_:A\}.    (G  \mvdash{}  CompOp(A)  {}\mRightarrow{}  G  \mvdash{}  CompOp((Path\_A  a  b)))
Date html generated:
2020_05_20-PM-05_12_23
Last ObjectModification:
2020_04_18-AM-09_57_23
Theory : cubical!type!theory
Home
Index