Nuprl Lemma : path-contraction_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].
  (path-contraction(X;pth) ∈ {X.𝕀 ⊢ _:(Path_(A)p (a)p path-point(pth))})


Proof




Definitions occuring in Statement :  path-contraction: path-contraction(X;pth) path-point: path-point(pth) path-type: (Path_A b) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-contraction: path-contraction(X;pth) guard: {T} subtype_rel: A ⊆B cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) squash: T prop: uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True all: x:A. B[x] csm-ap-term: (t)s csm-id: 1(X) csm-ap: (s)x interval-0: 0(𝕀) interval-1: 1(𝕀) path-point: path-point(pth)
Lemmas referenced :  cubical-path-app_wf cube-context-adjoin_wf interval-type_wf cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf csm-ap-term_wf interval-meet_wf csm-interval-type cc-snd_wf cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe path-type-p subtype_rel_self iff_weakening_equal cube_set_map_wf term-to-path_wf csm_id_adjoin_fst_term_lemma csm-cubical-path-app cc_snd_csm_id_adjoin_lemma csm-interval-meet interval-meet-0 csm-path-type cubical-path-app-0 interval-meet-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry Error :memTop,  axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination natural_numberEquality hyp_replacement dependent_functionElimination applyLambdaEquality lambdaFormation_alt equalityIstype

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    (path-contraction(X;pth)  \mmember{}  \{X.\mBbbI{}  \mvdash{}  \_:(Path\_(A)p  (a)p  path-point(pth))\})



Date html generated: 2020_05_20-PM-03_28_22
Last ObjectModification: 2020_04_07-PM-05_30_01

Theory : cubical!type!theory


Home Index