Nuprl Lemma : path-point-0
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A a b)}].  ((path-point(pth))[0(𝕀)] = a ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
path-point: path-point(pth), 
path-type: (Path_A a b), 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
path-point: path-point(pth), 
all: ∀x:A. B[x], 
interval-0: 0(𝕀), 
csm-id: 1(X), 
csm-ap-term: (t)s, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
csm-cubical-path-app, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
cubical-term_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
cubical-path-app-0, 
csm-ap-term_wf, 
csm-id_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
csm-ap-id-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
dependent_functionElimination, 
universeIsType, 
instantiate, 
hypothesisEquality, 
applyEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].    ((path-point(pth))[0(\mBbbI{})]  =  a)
Date html generated:
2020_05_20-PM-03_27_57
Last ObjectModification:
2020_04_06-PM-06_46_42
Theory : cubical!type!theory
Home
Index