Nuprl Lemma : path-type-at

[X,A,a,b,I,alpha:Top].
  ((Path_A b)(alpha) {p:{w:J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:Point(dM(J)) ⟶ A(f(alpha))| 
                             ∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:Point(dM(J)).
                               ((w f(alpha) g) (w f ⋅ (u f(alpha) g)) ∈ A(g(f(alpha))))} 
                          ((p 0) a(alpha) ∈ A(alpha)) ∧ ((p 1) b(alpha) ∈ A(alpha))} )


Proof




Definitions occuring in Statement :  path-type: (Path_A b) interval-type: 𝕀 cubical-term-at: u(a) cubical-type-ap-morph: (u f) cubical-type-at: A(a) cube-set-restriction: f(s) nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J dM1: 1 dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] top: Top all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] sqequal: t equal: t ∈ T
Definitions unfolded in proof :  path-type: (Path_A b) pathtype: Path(A) cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]} all: x:A. B[x] member: t ∈ T top: Top cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) uall: [x:A]. B[x] interval-presheaf: 𝕀
Lemmas referenced :  cubical_type_at_pair_lemma interval-type-at I_cube_pair_redex_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination because_Cache isect_memberFormation sqequalAxiom hypothesisEquality

Latex:
\mforall{}[X,A,a,b,I,alpha:Top].
    ((Path\_A  a  b)(alpha)  \msim{}  \{p:\{w:J:fset(\mBbbN{})  {}\mrightarrow{}  f:J  {}\mrightarrow{}  I  {}\mrightarrow{}  u:Point(dM(J))  {}\mrightarrow{}  A(f(alpha))| 
                                                          \mforall{}J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}u:Point(dM(J)).
                                                              ((w  J  f  u  f(alpha)  g)  =  (w  K  f  \mcdot{}  g  (u  f(alpha)  g)))\}  | 
                                                    ((p  I  1  0)  =  a(alpha))  \mwedge{}  ((p  I  1  1)  =  b(alpha))\}  )



Date html generated: 2017_01_10-AM-08_53_25
Last ObjectModification: 2016_12_19-AM-11_17_09

Theory : cubical!type!theory


Home Index