Nuprl Lemma : refl-path-app

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[r:{X ⊢ _:𝕀}].  (refl(a) a ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubical-path-app: pth r interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-refl: refl(a) cubical-path-app: pth r term-to-path: <>(a) cubicalpath-app: pth r member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] squash: T true: True
Lemmas referenced :  cubical-term_wf interval-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf cubical-beta csm-ap-type_wf cube-context-adjoin_wf cc-fst_wf csm-ap-term_wf csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma csm-ap-id-type csm-ap-id-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination Error :memTop,  lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}].    (refl(a)  @  r  =  a)



Date html generated: 2020_05_20-PM-03_21_58
Last ObjectModification: 2020_04_07-PM-03_30_19

Theory : cubical!type!theory


Home Index