Nuprl Lemma : singleton-center_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (singleton-center(X;a) ∈ {X ⊢ _:Singleton(a)})


Proof




Definitions occuring in Statement :  singleton-center: singleton-center(X;a) singleton-type: Singleton(a) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-type: Singleton(a) singleton-center: singleton-center(X;a) subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  cubical-pair_wf path-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf cubical-refl_wf subset-cubical-term2 sub_cubical_set_self csm-id-adjoin_wf path-type-q-id-adjoin cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (singleton-center(X;a)  \mmember{}  \{X  \mvdash{}  \_:Singleton(a)\})



Date html generated: 2020_05_20-PM-03_29_25
Last ObjectModification: 2020_04_06-PM-06_51_19

Theory : cubical!type!theory


Home Index