Nuprl Lemma : subset-comp-structure
∀[X,Y:j⊢]. ∀[T:{Y ⊢ _}].  Y ⊢ Compositon(T) ⊆r X ⊢ Compositon(T) supposing sub_cubical_set{j:l}(X; Y)
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-type: {X ⊢ _}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
composition-structure-subset, 
sub_cubical_set_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
universeIsType, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X,Y:j\mvdash{}].  \mforall{}[T:\{Y  \mvdash{}  \_\}].
    Y  \mvdash{}  Compositon(T)  \msubseteq{}r  X  \mvdash{}  Compositon(T)  supposing  sub\_cubical\_set\{j:l\}(X;  Y)
Date html generated:
2020_05_20-PM-04_36_33
Last ObjectModification:
2020_04_19-PM-01_54_18
Theory : cubical!type!theory
Home
Index