Nuprl Lemma : subset-comp-structure

[X,Y:j⊢]. ∀[T:{Y ⊢ _}].  Y ⊢ Compositon(T) ⊆X ⊢ Compositon(T) supposing sub_cubical_set{j:l}(X; Y)


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  composition-structure-subset sub_cubical_set_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule axiomEquality universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X,Y:j\mvdash{}].  \mforall{}[T:\{Y  \mvdash{}  \_\}].
    Y  \mvdash{}  Compositon(T)  \msubseteq{}r  X  \mvdash{}  Compositon(T)  supposing  sub\_cubical\_set\{j:l\}(X;  Y)



Date html generated: 2020_05_20-PM-04_36_33
Last ObjectModification: 2020_04_19-PM-01_54_18

Theory : cubical!type!theory


Home Index