Nuprl Lemma : subset-restriction
∀[X,Y:j⊢].  ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:Y(I)].  (f(a) = f(a) ∈ X(J)) supposing sub_cubical_set{j:l}(Y; X)
Proof
Definitions occuring in Statement : 
sub_cubical_set: Y ⊆ X, 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
sub_cubical_set: Y ⊆ X, 
sub_ps_context: Y ⊆ X, 
cube_set_map: A ⟶ B, 
csm-id: 1(X), 
pscm-id: 1(X), 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
I_cube: A(I), 
I_set: A(I), 
cube-set-restriction: f(s), 
psc-restriction: f(s)
Lemmas referenced : 
ps-subset-restriction, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[X,Y:j\mvdash{}].
    \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:Y(I)].    (f(a)  =  f(a))  supposing  sub\_cubical\_set\{j:l\}(Y;  X)
Date html generated:
2020_05_20-PM-01_43_44
Last ObjectModification:
2020_04_03-PM-04_09_52
Theory : cubical!type!theory
Home
Index