Nuprl Lemma : system-type-same

[Gamma:j⊢]. ∀[sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List].
  ∀i:ℕ||sys||. Gamma, fst(sys[i]) ⊢ system-type(sys) snd(sys[i]) supposing compatible-system{i:l}(Gamma;sys)


Proof




Definitions occuring in Statement :  system-type: system-type(sys) compatible-system: compatible-system{i:l}(Gamma;sys) same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] same-cubical-type: Gamma ⊢ B member: t ∈ T implies:  Q and: P ∧ Q prop:
Lemmas referenced :  system-type-properties int_seg_wf length_wf cubical-term_wf face-type_wf cubical-type_wf context-subset_wf compatible-system_wf list_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination universeIsType isectElimination natural_numberEquality instantiate productEquality cumulativity

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List].
    \mforall{}i:\mBbbN{}||sys||.  Gamma,  fst(sys[i])  \mvdash{}  system-type(sys)  =  snd(sys[i]) 
    supposing  compatible-system\{i:l\}(Gamma;sys)



Date html generated: 2020_05_20-PM-03_09_58
Last ObjectModification: 2020_04_06-PM-11_56_52

Theory : cubical!type!theory


Home Index