Nuprl Lemma : system-type-same
∀[Gamma:j⊢]. ∀[sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List].
  ∀i:ℕ||sys||. Gamma, fst(sys[i]) ⊢ system-type(sys) = snd(sys[i]) supposing compatible-system{i:l}(Gamma;sys)
Proof
Definitions occuring in Statement : 
system-type: system-type(sys)
, 
compatible-system: compatible-system{i:l}(Gamma;sys)
, 
same-cubical-type: Gamma ⊢ A = B
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
same-cubical-type: Gamma ⊢ A = B
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
system-type-properties, 
int_seg_wf, 
length_wf, 
cubical-term_wf, 
face-type_wf, 
cubical-type_wf, 
context-subset_wf, 
compatible-system_wf, 
list_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
instantiate, 
productEquality, 
cumulativity
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List].
    \mforall{}i:\mBbbN{}||sys||.  Gamma,  fst(sys[i])  \mvdash{}  system-type(sys)  =  snd(sys[i]) 
    supposing  compatible-system\{i:l\}(Gamma;sys)
Date html generated:
2020_05_20-PM-03_09_58
Last ObjectModification:
2020_04_06-PM-11_56_52
Theory : cubical!type!theory
Home
Index