Nuprl Lemma : system-type_wf

[Gamma:j⊢]. ∀[sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List].
  Gamma, \/(map(λp.(fst(p));sys)) ⊢ system-type(sys) supposing compatible-system{i:l}(Gamma;sys)


Proof




Definitions occuring in Statement :  system-type: system-type(sys) compatible-system: compatible-system{i:l}(Gamma;sys) context-subset: Gamma, phi face-or-list: \/(L) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) member: t ∈ T lambda: λx.A[x] product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q prop:
Lemmas referenced :  system-type-properties compatible-system_wf list_wf cubical-term_wf face-type_wf cubical-type_wf context-subset_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination equalityTransitivity equalitySymmetry sqequalRule axiomEquality universeIsType isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate productEquality cumulativity

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List].
    Gamma,  \mbackslash{}/(map(\mlambda{}p.(fst(p));sys))  \mvdash{}  system-type(sys)  supposing  compatible-system\{i:l\}(Gamma;sys)



Date html generated: 2020_05_20-PM-03_09_46
Last ObjectModification: 2020_04_07-PM-00_58_33

Theory : cubical!type!theory


Home Index