Nuprl Lemma : term-to-pathtype-eta
∀[X:j⊢]. ∀[A:{X ⊢ _}].  ∀pth:{X ⊢ _:Path(A)}. (<>(pth)p @ q = pth ∈ {X ⊢ _:Path(A)})
Proof
Definitions occuring in Statement : 
term-to-pathtype: <>a, 
cubical-path-app: pth @ r, 
pathtype: Path(A), 
cc-snd: q, 
cc-fst: p, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
term-to-pathtype: <>a, 
pathtype: Path(A), 
cubical-path-app: pth @ r, 
term-to-path: <>(a), 
cubicalpath-app: pth @ r, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True
Lemmas referenced : 
cubical-term_wf, 
pathtype_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
cubical-fun-as-cubical-pi, 
interval-type_wf, 
cubical-eta, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cc-fst_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}pth:\{X  \mvdash{}  \_:Path(A)\}.  (<>(pth)p  @  q  =  pth)
Date html generated:
2020_05_20-PM-03_20_12
Last ObjectModification:
2020_04_06-PM-06_37_01
Theory : cubical!type!theory
Home
Index