Nuprl Lemma : term-to-pathtype-eta

[X:j⊢]. ∀[A:{X ⊢ _}].  ∀pth:{X ⊢ _:Path(A)}. (<>(pth)p pth ∈ {X ⊢ _:Path(A)})


Proof




Definitions occuring in Statement :  term-to-pathtype: <>a cubical-path-app: pth r pathtype: Path(A) cc-snd: q cc-fst: p csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] term-to-pathtype: <>a pathtype: Path(A) cubical-path-app: pth r term-to-path: <>(a) cubicalpath-app: pth r member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True
Lemmas referenced :  cubical-term_wf pathtype_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf cubical-fun-as-cubical-pi interval-type_wf cubical-eta csm-ap-type_wf cube-context-adjoin_wf cc-fst_wf subset-cubical-term2 sub_cubical_set_self squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution universeIsType cut thin instantiate introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache independent_isectElimination equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    \mforall{}pth:\{X  \mvdash{}  \_:Path(A)\}.  (<>(pth)p  @  q  =  pth)



Date html generated: 2020_05_20-PM-03_20_12
Last ObjectModification: 2020_04_06-PM-06_37_01

Theory : cubical!type!theory


Home Index