Nuprl Lemma : transprt-fun_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 +⊢ Compositon(A)].
  (transprt-fun(Gamma;A;cA) ∈ {Gamma ⊢ _:((A)[0(𝕀)] ⟶ (A)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
transprt-fun: transprt-fun(Gamma;A;cA), 
composition-structure: Gamma ⊢ Compositon(A), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
transprt-fun: transprt-fun(Gamma;A;cA), 
cubical-type: {X ⊢ _}, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-type: (AF)s, 
cc-fst: p, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
constant-cubical-type: (X), 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
interval-1: 1(𝕀), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
squash: ↓T, 
true: True
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
cubical-lambda_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-id-adjoin_wf-interval-1, 
cc-fst_wf, 
transprt_wf, 
csm+_wf_interval, 
cc-snd_wf, 
csm-comp-structure_wf, 
cubical-fun-as-cubical-pi, 
cubical-term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
hyp_replacement, 
lambdaFormation_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
universeEquality, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  +\mvdash{}  Compositon(A)].
    (transprt-fun(Gamma;A;cA)  \mmember{}  \{Gamma  \mvdash{}  \_:((A)[0(\mBbbI{})]  {}\mrightarrow{}  (A)[1(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-04_38_17
Last ObjectModification:
2020_04_11-PM-05_13_25
Theory : cubical!type!theory
Home
Index