Nuprl Lemma : eu-between-eq-inner-trans
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (a_b_c) supposing (b_c_d and a_b_d)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
stable: Stable{P}, 
not: ¬A, 
false: False, 
prop: ℙ, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
sq_stable__eu-between-eq, 
stable__eu-between-eq, 
not_wf, 
eu-between-eq_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-between-eq-def, 
equal_wf, 
eu-between_wf, 
eu-between-trans, 
stable__eu-between, 
squash_wf, 
true_wf, 
euclidean-structure_wf, 
iff_weakening_equal, 
eu-between-same, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
independent_isectElimination, 
addLevel, 
voidElimination, 
levelHypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
productEquality, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
lambdaEquality, 
universeEquality, 
natural_numberEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a\_b\_c)  supposing  (b\_c\_d  and  a\_b\_d)
 Date html generated: 
2016_10_26-AM-07_40_59
 Last ObjectModification: 
2016_07_12-AM-08_07_10
Theory : euclidean!geometry
Home
Index