Nuprl Lemma : p8eu
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  Cong3(abc,xyz) ⇒ (abc = xyz ∧ bac = yxz ∧ bca = yzx) supposing Triangle(a;b;c) ∧ Triangle(x;y;z)
Proof
Definitions occuring in Statement : 
eu-cong-tri: Cong3(abc,a'b'c'), 
eu-cong-angle: abc = xyz, 
eu-tri: Triangle(a;b;c), 
euclidean-plane: EuclideanPlane, 
eu-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
prop: ℙ, 
eu-cong-angle: abc = xyz, 
eu-cong-tri: Cong3(abc,a'b'c'), 
cand: A c∧ B, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
eu-tri: Triangle(a;b;c), 
and: P ∧ Q, 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Rules used in proof : 
equalityTransitivity, 
independent_isectElimination, 
dependent_pairFormation, 
productEquality, 
because_Cache, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
equalityEquality, 
voidElimination, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    Cong3(abc,xyz)  {}\mRightarrow{}  (abc  =  xyz  \mwedge{}  bac  =  yxz  \mwedge{}  bca  =  yzx)  supposing  Triangle(a;b;c)  \mwedge{}  Triangle(x;y;z)
Date html generated:
2016_07_08-PM-05_54_27
Last ObjectModification:
2016_07_05-PM-03_04_37
Theory : euclidean!geometry
Home
Index