Step
*
2
3
1
of Lemma
Dbet-to-between
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. ∀A,B,C:Point.  (A # BC 
⇒ |AC| < |AB| + |BC|)
6. Dbet(e;a;b;c)
7. |ab| + |ba| + |ac| ≤ |ac|
8. ¬a # bc
9. Colinear(a;b;c)
10. c-a-b
11. B(bac)
12. b # a
13. a # c
14. |bc| = |ba| + |ac| ∈ Length
⊢ B(abc)
BY
{ ((InstLemma `geo-add-length-le-implies-eq` [⌜e⌝;⌜|ba| + |ac|⌝;⌜b⌝;⌜a⌝]⋅ THEN Auto)
   THEN (InstLemma `geo-le-add1` [⌜e⌝;⌜|ac|⌝;⌜|ba|⌝]⋅ THEN Auto)
   THEN InstLemma `geo-le_transitivity` [⌜e⌝;⌜|ab| + |ba| + |ac|⌝;⌜|ac|⌝;⌜|ba| + |ac|⌝]⋅
   THEN Auto) }
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  \mforall{}A,B,C:Point.    (A  \#  BC  {}\mRightarrow{}  |AC|  <  |AB|  +  |BC|)
6.  Dbet(e;a;b;c)
7.  |ab|  +  |ba|  +  |ac|  \mleq{}  |ac|
8.  \mneg{}a  \#  bc
9.  Colinear(a;b;c)
10.  c-a-b
11.  B(bac)
12.  b  \#  a
13.  a  \#  c
14.  |bc|  =  |ba|  +  |ac|
\mvdash{}  B(abc)
By
Latex:
((InstLemma  `geo-add-length-le-implies-eq`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}|ba|  +  |ac|\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  (InstLemma  `geo-le-add1`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}|ac|\mkleeneclose{};\mkleeneopen{}|ba|\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  InstLemma  `geo-le\_transitivity`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}|ab|  +  |ba|  +  |ac|\mkleeneclose{};\mkleeneopen{}|ac|\mkleeneclose{};\mkleeneopen{}|ba|  +  |ac|\mkleeneclose{}]\mcdot{}
  THEN  Auto)
Home
Index