Nuprl Lemma : Dbet-to-le
∀g:EuclideanPlane. ∀a,b,c:Point.  (Dbet(g;a;b;c) ⇒ |ab| + |bc| ≤ |ac|)
Proof
Definitions occuring in Statement : 
dist-bet: Dbet(g;a;b;c), 
geo-le: p ≤ q, 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
not: ¬A, 
dist-bet: Dbet(g;a;b;c), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
not-dist-to-le, 
dist-bet_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
universeIsType, 
isectElimination, 
hypothesisEquality, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (Dbet(g;a;b;c)  {}\mRightarrow{}  |ab|  +  |bc|  \mleq{}  |ac|)
Date html generated:
2019_10_16-PM-02_53_24
Last ObjectModification:
2018_12_04-PM-02_24_26
Theory : euclidean!plane!geometry
Home
Index