Nuprl Lemma : Euclid-Prop1
∀e:EuclideanPlane. ∀a,b:Point.  (a ≠ b ⇒ (∃c:Point. EQΔ(c;b;a)))
Proof
Definitions occuring in Statement : 
geo-equilateral: EQΔ(a;b;c), 
euclidean-plane: EuclideanPlane, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
squash: ↓T, 
guard: {T}, 
sq_stable: SqStable(P), 
cand: A c∧ B, 
and: P ∧ Q, 
geo-equilateral: EQΔ(a;b;c), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__geo-congruent, 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-equilateral_wf, 
lsep-all-sym2, 
sq_stable__geo-lsep, 
geo-sep_wf, 
Euclid-Prop1-left-ext
Rules used in proof : 
independent_isectElimination, 
instantiate, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
dependent_pairFormation, 
rename, 
setElimination, 
sqequalRule, 
applyEquality, 
isectElimination, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}c:Point.  EQ\mDelta{}(c;b;a)))
Date html generated:
2018_05_22-AM-11_55_08
Last ObjectModification:
2018_05_21-AM-01_14_01
Theory : euclidean!plane!geometry
Home
Index