Nuprl Lemma : Euclid-Prop2-lemma-ext
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀v:Point.  (∃x:Point [ax ≅ bv])
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-congruent: ab ≅ cd, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T, 
eqtri: Δ(a;b), 
prop2-lemma: lemma2(a;b;c), 
let: let, 
Euclid-Prop2-lemma, 
sq_stable__and, 
sq_stable__geo-congruent, 
sq_stable__geo-left, 
Euclid-Prop1-left-ext, 
extend-using-SC
Lemmas referenced : 
Euclid-Prop2-lemma, 
sq_stable__and, 
sq_stable__geo-congruent, 
sq_stable__geo-left, 
Euclid-Prop1-left-ext, 
extend-using-SC
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}v:Point.    (\mexists{}x:Point  [ax  \mcong{}  bv])
Date html generated:
2019_10_16-PM-01_15_58
Last ObjectModification:
2019_09_27-PM-04_45_54
Theory : euclidean!plane!geometry
Home
Index