Nuprl Lemma : Euclid-Prop21
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (I(abc;d) ⇒ {|cd| + |bd| < |ba| + |ac| ∧ bac < bdc})
Proof
Definitions occuring in Statement : 
geo-interior-point: I(abc;d), 
geo-lt-angle: abc < xyz, 
geo-lt: p < q, 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-interior-point: I(abc;d), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
geo-strict-between: a-b-c, 
cand: A c∧ B, 
basic-geometry-: BasicGeometry-, 
euclidean-plane: EuclideanPlane, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
basic-geometry: BasicGeometry, 
oriented-plane: OrientedPlane, 
geo-lsep: a # bc, 
squash: ↓T, 
true: True, 
geo-zero-length: 0, 
geo-length-type: Length, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (I(abc;d)  {}\mRightarrow{}  \{|cd|  +  |bd|  <  |ba|  +  |ac|  \mwedge{}  bac  <  bdc\})
Date html generated:
2020_05_20-AM-10_39_20
Last ObjectModification:
2020_01_13-PM-04_53_02
Theory : euclidean!plane!geometry
Home
Index