Step
*
1
1
4
1
of Lemma
Euclid-Prop27
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. x : Point
7. y : Point
8. Colinear(x;a;b)
9. Colinear(y;c;d)
10. a # b
11. c # d
12. a leftof yx
13. c leftof xy
14. axy ≅a cyx
15. x1 : {z:Point| Colinear(z;a;b)} 
16. y1 : {z:Point| Colinear(z;a;b)} 
17. x1 leftof cd
18. y1 leftof dc
19. x2 : Point
20. Colinear(c;d;x2)
21. x1-x2-y1
22. Colinear(x2;x;a)
23. x-a-x2
24. x2xy ≅a cyx
⊢ False
BY
{ (InstLemma `Euclid-prop16` [⌜e⌝;⌜x⌝;⌜x2⌝;⌜y⌝;⌜c⌝]⋅
   THENA (Auto
          THEN (InstLemma `geo-left-out-3` [⌜e⌝;⌜x⌝;⌜y⌝;⌜a⌝;⌜x2⌝]⋅ THEN EAuto 1)
          THEN (InstLemma  `use-plane-sep_strict` [⌜e⌝;⌜y⌝;⌜x⌝;⌜x2⌝;⌜c⌝]⋅ THENA Auto)
          THEN ExRepD
          THEN ((InstLemma  `geo-intersection-unicity` [⌜e⌝;⌜x⌝;⌜y⌝;⌜x2⌝;⌜c⌝;⌜y⌝;⌜x@0⌝]⋅ THENA Auto)
                THENA (InstLemma  `not-lsep-iff-colinear` [⌜e⌝;⌜x⌝;⌜y⌝;⌜x2⌝]⋅ THEN Auto)
                )
          THEN RWO "-1" 0
          THEN Auto)
   ) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. x : Point
7. y : Point
8. Colinear(x;a;b)
9. Colinear(y;c;d)
10. a # b
11. c # d
12. a leftof yx
13. c leftof xy
14. axy ≅a cyx
15. x1 : {z:Point| Colinear(z;a;b)} 
16. y1 : {z:Point| Colinear(z;a;b)} 
17. x1 leftof cd
18. y1 leftof dc
19. x2 : Point
20. Colinear(c;d;x2)
21. x1-x2-y1
22. Colinear(x2;x;a)
23. x-a-x2
24. x2xy ≅a cyx
25. yx2x < xyc ∧ x2xy < xyc
⊢ False
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  d  :  Point
6.  x  :  Point
7.  y  :  Point
8.  Colinear(x;a;b)
9.  Colinear(y;c;d)
10.  a  \#  b
11.  c  \#  d
12.  a  leftof  yx
13.  c  leftof  xy
14.  axy  \mcong{}\msuba{}  cyx
15.  x1  :  \{z:Point|  Colinear(z;a;b)\} 
16.  y1  :  \{z:Point|  Colinear(z;a;b)\} 
17.  x1  leftof  cd
18.  y1  leftof  dc
19.  x2  :  Point
20.  Colinear(c;d;x2)
21.  x1-x2-y1
22.  Colinear(x2;x;a)
23.  x-a-x2
24.  x2xy  \mcong{}\msuba{}  cyx
\mvdash{}  False
By
Latex:
(InstLemma  `Euclid-prop16`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
  THENA  (Auto
                THEN  (InstLemma  `geo-left-out-3`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{}]\mcdot{}  THEN  EAuto  1)
                THEN  (InstLemma    `use-plane-sep\_strict`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THENA  Auto)
                THEN  ExRepD
                THEN  ((InstLemma    `geo-intersection-unicity`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x@0\mkleeneclose{}]\mcdot{}  THENA  Auto)
                            THENA  (InstLemma    `not-lsep-iff-colinear`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{}]\mcdot{}  THEN  Auto)
                            )
                THEN  RWO  "-1"  0
                THEN  Auto)
  )
Home
Index