Nuprl Lemma : Euclid-Prop31-sep
∀e:EuclideanPlane. ∀a,b,x:Point.  (a # b ⇒ x # ab ⇒ (∃y:Point. (geo-parallel-points(e;a;b;x;y) ∧ x # y)))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,x:Point.
    (a  \#  b  {}\mRightarrow{}  x  \#  ab  {}\mRightarrow{}  (\mexists{}y:Point.  (geo-parallel-points(e;a;b;x;y)  \mwedge{}  x  \#  y)))
Date html generated:
2020_05_20-AM-10_43_46
Last ObjectModification:
2020_01_13-PM-10_28_28
Theory : euclidean!plane!geometry
Home
Index