Nuprl Lemma : Euclid-drop-perp-0
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a # b} . ∀c:Point.
  ∃x:Point. (∃p:Point [(Colinear(p;x;c) ∧ ab  ⊥p px ∧ x # ab ∧ x # c)])
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd, 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-lsep: a # bc, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
geo-gt-prim: ab>cd, 
record-select: r.x, 
geo-sep: a # b, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}, 
oriented-plane: OrientedPlane, 
l_member: (x ∈ l), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
select: L[n], 
cons: [a / b], 
less_than: a < b, 
true: True, 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
subtract: n - m, 
append: as @ bs, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
sq_exists: ∃x:A [B[x]], 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
geo-eq: a ≡ b, 
geo-perp-in: ab  ⊥x cd
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c:Point.
    \mexists{}x:Point.  (\mexists{}p:Point  [(Colinear(p;x;c)  \mwedge{}  ab    \mbot{}p  px  \mwedge{}  x  \#  ab  \mwedge{}  x  \#  c)])
Date html generated:
2020_05_20-AM-10_04_10
Last ObjectModification:
2019_12_28-AM-08_24_36
Theory : euclidean!plane!geometry
Home
Index