Nuprl Lemma : Playfair-axiom_wf
∀g:EuclideanPlane. (Playfair-axiom(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
Playfair-axiom: Playfair-axiom(e), 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
Playfair-axiom: Playfair-axiom(e), 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
cand: A c∧ B, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line_wf, 
geo-incident_wf, 
geoline-subtype1, 
geo-Aparallel_wf, 
geo-line-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
functionEquality, 
productEquality, 
productElimination
Latex:
\mforall{}g:EuclideanPlane.  (Playfair-axiom(g)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_08_19
Last ObjectModification:
2018_05_11-PM-10_50_06
Theory : euclidean!plane!geometry
Home
Index