Nuprl Lemma : Post5_wf
∀e:EuclideanPlane. (Post5(e) ∈ ℙ)
Proof
Definitions occuring in Statement : 
Post5: Post5(e), 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
Post5: Post5(e), 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear_wf, 
geo-left_wf, 
hp-angle-sum_wf, 
geo-lsep_wf, 
geo-intersect-points_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
functionEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
productEquality, 
dependent_functionElimination, 
universeIsType
Latex:
\mforall{}e:EuclideanPlane.  (Post5(e)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-02_37_12
Last ObjectModification:
2019_06_19-PM-02_30_31
Theory : euclidean!plane!geometry
Home
Index