Step
*
2
2
of Lemma
Prop22-inequality-implies-triangle
.....antecedent..... 
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. c1 : Point
9. c2 : Point
10. ac ≅ ac1
11. bc2 > bc1
12. bc ≅ bc2
13. ac1 > ac2
⊢ ∃p,q:Point. ((ac1 ≅ ap ∧ bc2>bp) ∧ bc2 ≅ bq ∧ ac1>aq)
BY
{ (InstConcl [⌜c1⌝;⌜c2⌝]⋅ THEN EAuto 1) }
Latex:
Latex:
.....antecedent..... 
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  |ac|  <  |ab|  +  |bc|
6.  |ab|  <  |ac|  +  |bc|
7.  |bc|  <  |ac|  +  |ab|
8.  c1  :  Point
9.  c2  :  Point
10.  ac  \mcong{}  ac1
11.  bc2  >  bc1
12.  bc  \mcong{}  bc2
13.  ac1  >  ac2
\mvdash{}  \mexists{}p,q:Point.  ((ac1  \mcong{}  ap  \mwedge{}  bc2>bp)  \mwedge{}  bc2  \mcong{}  bq  \mwedge{}  ac1>aq)
By
Latex:
(InstConcl  [\mkleeneopen{}c1\mkleeneclose{};\mkleeneopen{}c2\mkleeneclose{}]\mcdot{}  THEN  EAuto  1)
Home
Index