Nuprl Lemma : between-preserves-left-5
∀e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB ⇒ B ≠ V ⇒ A_V_B ⇒ C leftof VB)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
basic-geometry: BasicGeometry, 
uimplies: b supposing a, 
geo-out: out(p ab)
Lemmas referenced : 
euclidean-plane-axioms, 
geo-sep-sym, 
left-implies-sep, 
geo-left_wf, 
geo-sep_wf, 
istype-void, 
geo-eq_wf, 
geo-between_wf, 
geo-congruent_wf, 
geo-ge_wf, 
geo-lsep_wf, 
geo-colinear_wf, 
geo-between-out, 
geo-out_wf, 
geo-between-symmetry, 
geo-left-out-better-1, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
productIsType, 
functionIsType, 
independent_pairFormation, 
independent_isectElimination, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  B  \mneq{}  V  {}\mRightarrow{}  A\_V\_B  {}\mRightarrow{}  C  leftof  VB)
Date html generated:
2019_10_16-PM-01_32_53
Last ObjectModification:
2018_11_27-PM-00_01_58
Theory : euclidean!plane!geometry
Home
Index