Nuprl Lemma : congruence-preserves-lsep
∀g:EuclideanPlane. ∀a,b,c,A,B,C:Point.  (ab ≅ AB ⇒ ac ≅ AC ⇒ bc ≅ BC ⇒ c # ab ⇒ (¬¬C # AB))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
cand: A c∧ B, 
uimplies: b supposing a, 
prop: ℙ, 
guard: {T}, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not-lsep-iff-colinear, 
geo-congruent-preserves-colinear, 
geo-colinear_wf, 
geo-congruent_wf, 
geo-colinear-symmetry, 
geo-congruent-full-symmetry, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
istype-void, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
isectIsType, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
functionIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.    (ab  \mcong{}  AB  {}\mRightarrow{}  ac  \mcong{}  AC  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  c  \#  ab  {}\mRightarrow{}  (\mneg{}\mneg{}C  \#  AB))
Date html generated:
2019_10_16-PM-01_43_17
Last ObjectModification:
2018_12_11-PM-06_11_55
Theory : euclidean!plane!geometry
Home
Index