Nuprl Lemma : dist-axiomsB_wf
∀[g:EuclideanPlane]. (dist-axiomsB(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dist-axiomsB: dist-axiomsB(g), 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dist-axiomsB: dist-axiomsB(g), 
prop: ℙ, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
euclidean-plane: EuclideanPlane, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[g:EuclideanPlane].  (dist-axiomsB(g)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-10_47_41
Last ObjectModification:
2020_01_13-PM-06_47_53
Theory : euclidean!plane!geometry
Home
Index