Nuprl Lemma : dist-lemma-lt
∀g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (D(a;b;c;d;e;f) ⇒ |ef| < |ab| + |cd|)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f), 
geo-lt: p < q, 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
geo-lt: p < q, 
dist: D(a;b;c;d;e;f), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
guard: {T}, 
uimplies: b supposing a, 
true: True, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  |ef|  <  |ab|  +  |cd|)
Date html generated:
2020_05_20-AM-10_47_58
Last ObjectModification:
2020_01_13-PM-06_04_35
Theory : euclidean!plane!geometry
Home
Index