Nuprl Lemma : dist-to-gt
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (D(a;b;b;b;c;d) ⇒ ab > cd)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f), 
euclidean-plane: EuclideanPlane, 
geo-gt: cd > ab, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
dist: D(a;b;c;d;e;f), 
geo-gt: cd > ab, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
squash: ↓T, 
basic-geometry: BasicGeometry, 
sq_stable: SqStable(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
cand: A c∧ B
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (D(a;b;b;b;c;d)  {}\mRightarrow{}  ab  >  cd)
Date html generated:
2020_05_20-AM-10_48_15
Last ObjectModification:
2020_01_13-PM-06_04_53
Theory : euclidean!plane!geometry
Home
Index