Nuprl Lemma : dual-plane_wf
∀[pg:ProjectivePlane]. (dual-plane(pg) ∈ ProjectivePlane)
Proof
Definitions occuring in Statement : 
dual-plane: dual-plane(pg), 
projective-plane: ProjectivePlane, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
projective-plane: ProjectivePlane, 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
all: ∀x:A. B[x], 
basic-projective-plane: BasicProjectivePlane, 
dual-plane: dual-plane(pg), 
pgeo-non-trivial-dual-ext, 
pi1: fst(t), 
sq_exists: ∃x:A [B[x]], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g), 
pgeo-leq: a ≡ b, 
pgeo-peq: a ≡ b, 
pgeo-incident: a I b, 
pgeo-point: Point, 
pgeo-line: Line, 
pgeo-lsep: l ≠ m, 
pgeo-psep: a ≠ b, 
pgeo-plsep: pgeo-plsep(p; a; b), 
complete-pgeo-dual: complete-pgeo-dual(pg;l), 
pgeo-dual: pg*, 
mk-complete-pgeo: mk-complete-pgeo(pg;p), 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
pgeo-dual-prim: pg*, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3), 
mk-pgeo-prim: mk-pgeo-prim, 
btrue: tt, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
pgeo-meet: l ∧ m, 
pgeo-join: p ∨ q, 
triangle-axiom1: triangle-axiom1(g), 
triangle-axiom2: triangle-axiom2(g)
Lemmas referenced : 
basic-pgeo-axioms_wf, 
projective-plane-structure_subtype, 
projective-plane-structure-complete_subtype, 
subtype_rel_transitivity, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-primitives_wf, 
triangle-axiom1_wf, 
triangle-axiom2_wf, 
projective-plane_wf, 
complete-pgeo-dual_wf, 
pgeo-leq_wf, 
pgeo-line_wf, 
sq_exists_wf, 
all_wf, 
pgeo-non-trivial-dual-ext, 
rec_select_update_lemma, 
not_wf, 
pgeo-peq_wf, 
pgeo-incident_wf, 
pgeo-point_wf, 
pgeo-triangle-axiom1-dual, 
pgeo-triangle-axiom2-dual
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
hypothesis, 
productEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
independent_functionElimination
Latex:
\mforall{}[pg:ProjectivePlane].  (dual-plane(pg)  \mmember{}  ProjectivePlane)
Date html generated:
2019_10_16-PM-02_12_54
Last ObjectModification:
2018_08_23-PM-02_14_03
Theory : euclidean!plane!geometry
Home
Index