Nuprl Lemma : eu-eq_dist-axiomsB
∀g:EuclideanPlane. ((∀a,b,c:Point.  (a # bc ⇒ |ac| < |ab| + |bc|)) ⇒ dist-axiomsB(g))
Proof
Definitions occuring in Statement : 
dist-axiomsB: dist-axiomsB(g), 
geo-lt: p < q, 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
dist-axiomsB: dist-axiomsB(g), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
basic-geometry-: BasicGeometry-, 
dist: D(a;b;c;d;e;f), 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
not: ¬A, 
false: False, 
or: P ∨ Q, 
stable: Stable{P}, 
uiff: uiff(P;Q), 
geo-eq: a ≡ b, 
squash: ↓T, 
true: True, 
dist-tri: Dtri(g;a;b;c)
Latex:
\mforall{}g:EuclideanPlane.  ((\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  |ac|  <  |ab|  +  |bc|))  {}\mRightarrow{}  dist-axiomsB(g))
Date html generated:
2020_05_20-AM-10_49_29
Last ObjectModification:
2020_01_13-PM-06_35_20
Theory : euclidean!plane!geometry
Home
Index