Nuprl Lemma : full-Pasch
∀e:EuclideanPlane. ∀a,x,y,d,p:Point.
  ((((d # xa ∧ x-p-a) ∧ d # py) ∧ a leftof xy) ⇒ (∃p':Point. ((x-p'-y ∨ a-p'-y) ∧ Colinear(d;p;p'))))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-colinear: Colinear(a;b;c), 
geo-strict-between: a-b-c, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
true: True, 
squash: ↓T, 
less_than: a < b, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
basic-geometry-: BasicGeometry-, 
oriented-plane: OrientedPlane, 
exists: ∃x:A. B[x], 
basic-geometry: BasicGeometry, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
geo-lsep: a # bc, 
or: P ∨ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
geo-colinear_wf, 
or_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
exists_wf, 
equal_wf, 
l_member_wf, 
cons_member, 
nil_wf, 
cons_wf, 
oriented-colinear-append, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-strict-between-implies-colinear, 
geo-colinear-is-colinear-set, 
lsep-all-sym, 
colinear-lsep-cycle, 
geo-sep_wf, 
left-convex2, 
geo-sep-sym, 
left-between-implies-right1, 
geo-proper-extend-exists, 
lsep-implies-sep, 
geo-between_wf, 
geo-strict-between-sep3, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
left-convex, 
full-Pasch-lemma, 
left-symmetry, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-strict-between_wf, 
geo-left_wf, 
geo-point_wf
Rules used in proof : 
lambdaEquality, 
dependent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
inlFormation, 
rename, 
inrFormation, 
independent_pairFormation, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
unionElimination, 
productEquality, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,x,y,d,p:Point.
    ((((d  \#  xa  \mwedge{}  x-p-a)  \mwedge{}  d  \#  py)  \mwedge{}  a  leftof  xy)
    {}\mRightarrow{}  (\mexists{}p':Point.  ((x-p'-y  \mvee{}  a-p'-y)  \mwedge{}  Colinear(d;p;p'))))
Date html generated:
2017_10_04-PM-10_10_20
Last ObjectModification:
2017_10_03-PM-02_53_23
Theory : euclidean!plane!geometry
Home
Index