Nuprl Lemma : geo-Aparallel_functionality
∀[e1:EuclideanPlane]. ∀[l,m,l2,m2:Line].  ({uiff(l || m;l2 || m2)}) supposing (m ≡ m2 and l ≡ l2)
Proof
Definitions occuring in Statement : 
geo-Aparallel: l || m, 
geo-line-eq: l ≡ m, 
geo-line: Line, 
euclidean-plane: EuclideanPlane, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
geoline: LINE, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
geo-Aparallel: l || m, 
not: ¬A, 
false: False, 
prop: ℙ, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
quotient-member-eq, 
geo-line-eq_wf, 
geo-line_wf, 
geo-line-eq-equiv, 
geo-intersect_wf, 
geoline-subtype1, 
geo-Aparallel_wf, 
squash_wf, 
true_wf, 
geoline_wf, 
subtype_rel_self, 
iff_weakening_equal, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
voidElimination, 
addLevel, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
productElimination, 
cumulativity, 
isectEquality, 
independent_pairEquality, 
isect_memberEquality
Latex:
\mforall{}[e1:EuclideanPlane].  \mforall{}[l,m,l2,m2:Line].    (\{uiff(l  ||  m;l2  ||  m2)\})  supposing  (m  \mequiv{}  m2  and  l  \mequiv{}  l2)
Date html generated:
2018_05_22-PM-01_09_39
Last ObjectModification:
2018_05_11-PM-02_17_58
Theory : euclidean!plane!geometry
Home
Index