Nuprl Lemma : geo-add-length-property3
∀g:EuclideanPlane. ∀p,q:{p:Point| B(OXp)} .  (B(Xpq) ⇒ p + |pq| ≡ q)
Proof
Definitions occuring in Statement : 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
geo-X: X, 
geo-O: O, 
euclidean-plane: EuclideanPlane, 
geo-eq: a ≡ b, 
geo-between: B(abc), 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
geo-add-length: p + q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
basic-geometry: BasicGeometry, 
and: P ∧ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
uiff: uiff(P;Q), 
basic-geometry-: BasicGeometry-
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  B(OXp)\}  .    (B(Xpq)  {}\mRightarrow{}  p  +  |pq|  \mequiv{}  q)
Date html generated:
2020_05_20-AM-09_59_34
Last ObjectModification:
2020_01_13-PM-03_44_06
Theory : euclidean!plane!geometry
Home
Index