Nuprl Lemma : geo-between-inner-trans
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (B(abc)) supposing (B(bcd) and B(abd))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-between: B(abc), 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
and: P ∧ Q, 
prop: ℙ, 
geo-between: B(abc), 
not: ¬A, 
false: False, 
guard: {T}, 
basic-geo-axioms: BasicGeometryAxioms(g)
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (B(abc))  supposing  (B(bcd)  and  B(abd))
Date html generated:
2020_05_20-AM-09_47_50
Last ObjectModification:
2019_11_13-PM-03_28_03
Theory : euclidean!plane!geometry
Home
Index