Nuprl Lemma : geo-between-same-side
∀e:BasicGeometry. ∀[A,B,C,D:Point].  (¬((¬B(ACD)) ∧ (¬B(ADC)))) supposing (A # B and B(ABC) and B(ABD))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-between: B(abc), 
geo-sep: a # b, 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
geo-eq: a ≡ b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda3, 
append: as @ bs, 
ge: i ≥ j , 
less_than: a < b, 
cand: A c∧ B, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
l_member: (x ∈ l), 
stable: Stable{P}
Latex:
\mforall{}e:BasicGeometry
    \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}B(ACD))  \mwedge{}  (\mneg{}B(ADC))))  supposing  (A  \#  B  and  B(ABC)  and  B(ABD))
Date html generated:
2020_05_20-AM-09_53_03
Last ObjectModification:
2020_01_27-PM-10_02_49
Theory : euclidean!plane!geometry
Home
Index