Nuprl Lemma : geo-colinear-cong-tri-exists
∀[e:BasicGeometry]. ∀[a,b,c,a',c':Point].
  (Colinear(a;b;c) ⇒ ac ≅ a'c' ⇒ (¬¬(∃b':Point. (Cong3(abc,a'b'c') ∧ Colinear(a';b';c')))))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c'), 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
prop: ℙ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
geo-cong-tri: Cong3(abc,a'b'c'), 
guard: {T}, 
uimplies: b supposing a, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
squash: ↓T, 
true: True
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,a',c':Point].
    (Colinear(a;b;c)  {}\mRightarrow{}  ac  \mcong{}  a'c'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}b':Point.  (Cong3(abc,a'b'c')  \mwedge{}  Colinear(a';b';c')))))
Date html generated:
2020_05_20-AM-09_54_34
Last ObjectModification:
2020_01_13-PM-03_29_41
Theory : euclidean!plane!geometry
Home
Index