Nuprl Lemma : geo-colinear-iff
∀e:BasicGeometry-. ∀a,b,c:Point.  (Colinear(a;b;c) ⇐⇒ ¬((¬B(abc)) ∧ (¬B(bca)) ∧ (¬B(cab))))
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-, 
geo-colinear: Colinear(a;b;c), 
geo-between: B(abc), 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
geo-colinear: Colinear(a;b;c), 
cand: A c∧ B, 
or: P ∨ Q, 
basic-geometry-: BasicGeometry-, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
select: L[n], 
cons: [a / b], 
subtract: n - m
Latex:
\mforall{}e:BasicGeometry-.  \mforall{}a,b,c:Point.    (Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}B(abc))  \mwedge{}  (\mneg{}B(bca))  \mwedge{}  (\mneg{}B(cab))))
Date html generated:
2020_05_20-AM-09_48_35
Last ObjectModification:
2019_12_06-PM-05_37_55
Theory : euclidean!plane!geometry
Home
Index