Nuprl Lemma : geo-colinear-implies
∀e:BasicGeometry-. ∀a,b,c:Point.  (Colinear(a;b;c) ⇒ (¬((¬B(abc)) ∧ (¬B(bca)) ∧ (¬B(cab)))))
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-, 
geo-colinear: Colinear(a;b;c), 
geo-between: B(abc), 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
basic-geometry-: BasicGeometry-, 
euclidean-plane: EuclideanPlane, 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
geo-colinear: Colinear(a;b;c), 
not: ¬A, 
false: False, 
geo-between: B(abc), 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
cand: A c∧ B
Latex:
\mforall{}e:BasicGeometry-.  \mforall{}a,b,c:Point.    (Colinear(a;b;c)  {}\mRightarrow{}  (\mneg{}((\mneg{}B(abc))  \mwedge{}  (\mneg{}B(bca))  \mwedge{}  (\mneg{}B(cab)))))
Date html generated:
2020_05_20-AM-09_48_28
Last ObjectModification:
2020_01_27-PM-07_08_50
Theory : euclidean!plane!geometry
Home
Index