Nuprl Lemma : geo-colinear-same
∀[e:BasicGeometry]. ∀[a,b:Point].  (Colinear(a;b;b) ∧ Colinear(b;a;b) ∧ Colinear(b;b;a))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
basic-geometry: BasicGeometry, 
all: ∀x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
not: ¬A, 
geo-colinear: Colinear(a;b;c), 
cand: A c∧ B, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b:Point].    (Colinear(a;b;b)  \mwedge{}  Colinear(b;a;b)  \mwedge{}  Colinear(b;b;a))
Date html generated:
2020_05_20-AM-09_48_56
Last ObjectModification:
2019_12_20-PM-07_37_53
Theory : euclidean!plane!geometry
Home
Index