Nuprl Lemma : geo-cong-angle-symm3
∀e:BasicGeometry. ∀x,y,z,a,b,c:Point.  (xyz ≅a abc ⇒ zyx ≅a cba)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
cand: A c∧ B, 
basic-geometry: BasicGeometry, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-cong-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep-sym, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-between_wf, 
geo-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
productIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}x,y,z,a,b,c:Point.    (xyz  \mcong{}\msuba{}  abc  {}\mRightarrow{}  zyx  \mcong{}\msuba{}  cba)
Date html generated:
2019_10_16-PM-01_22_34
Last ObjectModification:
2018_11_07-PM-00_53_09
Theory : euclidean!plane!geometry
Home
Index